
Spin Hall effect in a system of Dirac fermions in the honeycomb lattice with intrinsic
and Rashba spin-orbit interaction

A. Dyrdał,1 V. K. Dugaev,2,3 and J. Barnaś1,4

1Department of Physics, A. Mickiewicz University, Umultowska 85, 61-614 Poznań, Poland
2Department of Physics, Rzeszów University of Technology, Powstańców Warszawy 6, 35-959 Rzeszów, Poland
3Department of Physics and CFIF, Instituto Superior Técnico, Technical University of Lisbon, Av. Rovisco Pais,

1049-001 Lisbon, Portugal
4Institute of Molecular Physics, Polish Academy of Sciences, Smoluchowskiego 17, 60-179 Poznań, Poland

�Received 12 July 2009; revised manuscript received 21 September 2009; published 23 October 2009�

We consider spin Hall effect in a system of massless Dirac fermions in a graphene lattice. Two types of
spin-orbit interaction, pertinent to the graphene lattice, are taken into account—the intrinsic and Rashba terms.
Assuming perfect crystal lattice, we calculate the topological contribution to spin Hall conductivity. When both
interactions are present, their interplay is shown to lead to some peculiarities in the dependence of spin Hall
conductivity on the Fermi level.
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I. INTRODUCTION

Long time ago Dyakonov and Perel predicted that in some
systems transverse spin current and spin accumulation may
be induced by electric current.1,2 This effect, known as spin
Hall effect �SHE�, is currently extensively studied both ex-
perimentally and theoretically3–8 �see also review papers9,10�.
The effect may appear in semiconductors as well as in metals
and originates from spin-orbit interaction. Generally, such an
interaction may be of intrinsic or extrinsic origin. The extrin-
sic SHE is associated with scattering mechanisms, such as
skew scattering and side jump in the presence of impurities.
In turn, the intrinsic mechanism of SHE is a consequence of
an unusual trajectory of the charge carriers in the momentum
space, which may be described by the Berry phase
formalism.11,12 This contribution will be referred to as the
topological one.

In this paper we consider the topological contribution to
spin Hall conductivity in a system of Dirac fermions with
spin-orbit coupling. Generally, the form of spin-orbit inter-
action depends on the symmetry and structure of the system.
The Dirac model turned out to be useful not only in the
relativistic field theory but also in condensed-matter physics
to describe some features of electronic spectrum �at least in a
certain energy range�. One of such systems is two-
dimensional graphene and in this paper we consider Dirac
fermions with the spin-orbit interaction taken in the form
appropriate for graphene and including both intrinsic and
Rashba terms. We believe that the results derived here will
shed some light on the spin Hall effect in graphene.

Graphene is a two-dimensional honeycomb lattice of car-
bon atoms, with two nonequivalent sublattices. The low-
energy electron states near the K and K� points at opposite
corners of the Brillouine zone can be approximated by the
conical energy spectrum. As a result, charge carriers are de-
scribed by the Dirac equation.13,14 The Fermi surface in a
neutral graphene consists of the nonequivalent points K and
K�, at which the valence and conduction bands touch each
other. However, when the intrinsic spin-orbit interaction is

included, an energy gap opens at these points. Unfortunately,
it is now believed that the intrinsic spin-orbit coupling in
graphene is rather weak so the gap is also small. Since the
graphene layer is usually on a substrate, one also can expect
spin-orbit interaction of Rashba type.15 Moreover, the corre-
sponding coupling parameter can be tuned externally by a
gate voltage. Indeed, a large Rashba spin-orbit interaction
has been reported in a recent experiment.16

Kane and Mele17 have shown that the intrinsic spin-orbit
interaction opens an energy gap at the Dirac points and also
have predicted a quantized value of the spin Hall conductiv-
ity when the Fermi level is in the gap. The quantized spin
Hall conductivity at the Dirac points was also confirmed by
later analytical and numerical calculations.18–20 On the other
hand, the presence of Rashba spin-orbit interaction reduces
the gap and when the Rashba interaction is stronger than the
intrinsic one, the gap becomes closed. Since the magnitude
of intrinsic spin-orbit interaction seems to be significantly
smaller than that assumed originally,21 it is possible to reach
the limit opposite to that considered by Kane and Mele, i.e.,
the limit where the Rashba coupling dominates while intrin-
sic spin-orbit interaction is negligible. To our knowledge,
spin Hall effect in this limit has not been considered analyti-
cally so far. Therefore, in this paper we present analytical
and numerical results obtained within the linear-response
theory and Green’s functions technique, assuming both in-
trinsic and Rashba spin-orbit interaction. We focus on the
topological contribution to the effect assuming perfect crys-
tal lattice and ignoring impurities and defects, which how-
ever may influence the magnitude of spin Hall effect in real
systems.18–20,22

The paper is organized as follows. In Sec. II we describe
the model and present a general formula for the spin Hall
conductivity. The case of pure intrinsic spin-orbit interaction
is presented in Sec. III while the case of Rashba interaction is
described and discussed in Sec. IV. The general case, where
both interactions are present, is described in Sec. V while
summary and final conclusions are in Sec. VI.
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II. MODEL AND GENERAL FORMULA FOR SPIN HALL
CONDUCTIVITY

Including both intrinsic and Rashba spin-orbit coupling,
the effective-mass Hamiltonian17 of graphene can be written
in the form

H = H0 + HSO + HR. �1�

The first term, H0, describes the low-energy electronic states
around the Dirac points K and K� in the Brillouin zone and
has the form

H0 = � 0 v��kx − iky�
v��kx + iky� 0

� , �2�

where the upper and lower signs correspond to the points K
and K�, respectively, and v is a parameter describing the
conical energy spectrum, v=�vF, with vF denoting the elec-
tron Fermi velocity. The second term in Eq. �1� describes the
intrinsic spin-orbit interaction in graphene,

HSO = ���SO�z 0

0 ��SO�z
� , �3�

with �SO being the relevant parameter �2�SO is the gap cre-
ated by the intrinsic spin-orbit coupling in the Dirac points�.
Finally, the last term in Eq. �1� stands for the Rashba spin-
orbit term,

HR = � 0 �R���y + i�x�
�R���y − i�x� 0

� , �4�

where �R is the corresponding coupling parameter. As in Eq.
�2�, the upper and lower signs in Eqs. �3� and �4� correspond
to the two inequivalent points K and K� of the Brillouin
zone, respectively.

To obtain spin Hall conductivity we introduce first the
spin current-density operator,

jsj =
1

2
�v,sj�+, �5�

where �A ,B�+=AB+BA denotes the anticommutator of any
operators A and B, vi= �1 /����H /�ki� is the velocity operator
�i=x ,y� and sj = �� /2�� j is the jth component �j=x ,y ,z� of
the spin operator. Taking into account the exact form of
Hamiltonian H one finds

vx = �
v
�
�0 I

I 0
� �6�

and

vy = i
v
�
�0 − I

I 0
� , �7�

with I being the 2�2 unit matrix.
In the linear-response theory, the dc spin Hall conductiv-

ity is given by the formula,23

�xy
sz = lim

	→0

e�

2	
Tr� d


2�

d2k

�2��2 �vx,sz�+Gk�
 + 	�vyGk�
� ,

�8�

where Gk�
� is the causal Green’s function corresponding to
Hamiltonian �1�. This formula will be used in the following
to calculate spin Hall conductivity in some specific cases as
well as in a general situation.

III. CASE OF �R=0 AND �SOÅ0

We will consider first the special case, when the Rashba
coupling vanishes, while the intrinsic spin-orbit interaction is
nonzero, �R=0 and �SO�0. Such a situation has been al-
ready considered analytically in the clean limit17 and also
studied numerically in the presence of impurities.18 Our re-
sults are consistent with those obtained in the above cited
works.

When �R=0, Eq. �8� for the spin Hall conductivity takes
the following form:

�xy
sz =� d2k

�2��2

d


2�

i2ev2�SO

�
 − ��SO
2 + v2k2 + � + i sign�
��2

�
1

�
 + ��SO
2 + v2k2 + � + i sign�
��2

, �9�

where � is the chemical potential.
In the zero-temperature limit, the spin Hall conductivity

will be presented in the form

�xy
sz = �xy

sz,0 � �xy
sz , �10�

where �xy
sz,0 is the contribution from the fully occupied va-

lence band and �xy
sz is associated either with the empty part

of the valence band �upper sign� or with occupied part of the
conduction band �lower sign�.

The contribution �xy
sz takes the form

�xy
sz = �

e�SO

4�
	 1

��SO
2 + v2k2	

0

kF

=
e

4�
�1 �

�SO

��SO
2 + v2kF

2 � ,

�11�

where the upper sign refers to the situation when the Fermi
level is in the valence band while the lower one when the
Fermi level is in the conduction band. In turn, the contribu-
tion from the fully occupied valence band can be calculated
as

�xy
sz,0 = −

ev2�SO

4�
�

0

� kdk

��SO
2 + v2k2�3/2 = −

e

4�
. �12�

Thus, from Eqs. �11� and �12� follows that the whole spin
Hall conductivity can be written as

�xy
sz = −

e

4�

�SO


�

�13�

for 
�
��SO and
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�xy
sz = −

e

4�
�14�

for 
�
��SO. The above result coincides with the ones ob-
tained by Kane and Mele17 and Sinitsyn et al.19 The other
two component of the spin Hall conductivity, i.e., �xy

sx and �xy
sy

vanish, as one could expect.
The corresponding numerical results are shown in Fig. 1

for three different values of the parameter �SO. Additional
factor of 2 has been taken into account in order to include the
two Dirac points K and K�. The spin Hall conductivity is
shown there as a function of the chemical potential measured
from the middle of the gap. When the Fermi level is in the
energy gap, the Hall conductivity is constant and quantized.
When, in turn, the Fermi level is either in the valence or
conduction bands, the absolute value of conductivity de-
creases and disappears for 
�
→�. Note, the conductivity is
symmetric with respect to the middle of the gap. The inset in
Fig. 1 shows the energy spectrum in the vicinity of the Dirac
point, calculated for the parameter vF obtained by Gmitra
et al.24

IV. CASE OF �SO=0 AND �RÅ0

Now, we consider the opposite situation, i.e., when the
intrinsic spin-orbit coupling is negligible, �SO=0, while the
Rashba parameter is nonzero, �R�0. Equation �8� leads then
to the following formula for the spin Hall conductivity:

�xy
sz = −� d


2�

d2k

�2��2

8iev2�R
2�
 + ���v2�kx

2 − ky
2� + �
 + ��2�

�n=1
4 �
 − En�k� + � + i sign�
��

�
1

�m=1
4 �
 − Em�k� + � + i sign�
��

, �15�

where Ei�k��i=1–4� describe the electron energy spectrum,

E1�k� = �R + ��R
2 + v2k2�1/2, �16�

E2�k� = �R − ��R
2 + v2k2�1/2, �17�

E3�k� = − �R + ��R
2 + v2k2�1/2, �18�

E4�k� = − �R − ��R
2 + v2k2�1/2. �19�

The states E1�k� and E3�k� correspond to the conduction
bands while E2�k� and E4�k� to the valence bands. We con-
sider first the case when 
�
�2�R.

A. Case of ����2�R

When the Fermi level is in the two valence bands,
��−2�R, then upon integrating Eq. �15� over 
 one arrives
at the following formula:

�xy
sz =

ev2

16��R
� dk

2�R
2k + v2k3

�v2k2 + �R
2�3/2 �f�
2� − f�
4�� , �20�

where f�
� is the Fermi-Dirac distribution �assumed here for
T=0�. Taking now into account the notation introduced in
Eq. �10�, one finds

�xy
sz,0 = 0 �21�

and

�xy
sz = −

e

4�

�2

2��2 − �R
2�

. �22�

As before, �xy
sz,0 is the contribution from both fully occupied

valence bands while �xy
sz takes into account the empty part

of the valence bands. Now, the contributions from the two
fully occupied valence bands cancel each other, so �xy

sz,0 van-
ishes exactly.

When the Fermi level is in both conduction bands,
��2�R, the spin Hall conductivity can be calculated in a
similar way and the formula for �xy

sz takes the same form as
for ��2�R, i.e., Eq. �22�. Thus, the total spin Hall conduc-
tivity for 
�
�2�R can be written as

�xy
sz =

�2

2��2 − �R
2�

e

4�
�23�

for the Fermi level in conduction bands, ��2�R, and

�xy
sz = −

�2

2��2 − �R
2�

e

4�
�24�

for the Fermi level in the valence bands, ��2�R.

B. Case of ����2�R

Now, we assume that 
�
�2�R. The only difference is
that now the Fermi level is either in one valence band or in
one conduction band. Spin Hall conductivity can be calcu-
lated in a similar way as before and one finds

�xy
sz =

��� + 2�R�
4�R�� + �R�

e

4�
�25�

for the Fermi level in the conduction band and

�xy
sz =

��� − 2�R�
4�R�� − �R�

e

4�
�26�

for the Fermi level in the valence band.

FIG. 1. �Color online� Spin Hall conductivity in the absence of
Rashba interaction and for indicated values of the intrinsic
spin-orbit parameter �SO. The inset shows the energy spectrum in
the vicinity of the Dirac point for �SO=0.01 meV. The parameter
v is defined as v=�vF, where vF is the Fermi velocity,
vF=0.833�106 m /s.
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Figure 2 presents numerical results for the spin Hall con-
ductivity as a function of the chemical potential. As before,
we included a factor of 2 in order to take into account con-
tribution from the second Dirac point. We note that now the
spin Hall conductivity tends to �xy

sz =−e /4� in the limit of
�→−� while for �→� it tends to the �xy

sz =e /4�. This be-
havior is different from that for intrinsic spin-orbit interac-
tion, where the contribution from conduction bands canceled
the corresponding part from the valence bands. It is also
worth to note that now the spin Hall conductivity is antisym-
metric with respect to change in the Fermi level sign.

We have also checked the other components of the spin
Hall conductivity. As before, these components vanish ex-
actly, �xy

sx =�xy
sy =0.

V. CASE WITH �RÅ0 AND �SOÅ0

When both intrinsic and Rashba spin-orbit interactions are
present in the system, their interplay leads to interesting and
peculiar behavior of the spin Hall conductivity. The analyti-
cal formulas, however, are much to complex to be presented
here, so we will show mainly results of numerical calcula-
tions.

Writing the Green’s function as

Gk�
� =
gk�
�

�n=1
4 �
 − En�k� + � + i sign�
��

, �27�

where En�k� �n=1–4� are the dispersion relations for the
conduction and valence bands,

E1�k� = �R + ���SO − �R�2 + v2k2, �28�

E2�k� = �R − ���SO − �R�2 + v2k2, �29�

E3�k� = − �R + ���SO + �R�2 + v2k2, �30�

E4�k� = − �R − ���SO + �R�2 + v2k2, �31�

and taking into account the explicit form of vx and vy one
may write the relevant trace in Eq. �8� as

Tr� 0 �z

�z 0
�gk�
1��0 − I

I 0
�gk�
2�� = P�
1,
2� , �32�

where P�
1 ,
2� is a certain function of 
1=
+�+	 and

2=
+�. Expanding P�
1 ,
2� as

P�
1,
2� = P�
1,
2�

1=
2=
+� + 		 �P�
1,
2�
�
1

	

1=
2=
+�

+ ¯

�33�

and taking into account that P�
1 ,
2� 

1=
2=
+�=0, one finds

P�
 + 	,
� � − 	�− 4��k2v2 + �SO
2 �2 + 4v2�R

2�kx
2 − ky

2��

+ 16�R
2��SO

2 + v2�kx
2 − ky

2���
 + ��

+ 8�SO�v2k2 + �SO
2 − 4�R

2��
 + ��2

+ 16�R
2�
 + ��3 − 4�SO�
 + ��4� . �34�

These formulas can be then used to calculate spin Hall
conductivity, either analytically by integrating over � and k
or numerically. Since analytical formula is generally rather
cumbersome, we performed numerical calculations while
analytical formula will be presented only for some special
cases �see below�.

A. �R��SO

Consider first the case when �R is significantly larger than
�SO. The corresponding spin Hall conductivity is shown in
Fig. 3 for �R=0.1 meV and three different values of �SO
�smaller than �R�. When �SO is much smaller than �R, then
the conductivity is determined practically only by the Rashba
coupling. With increasing �SO, the interplay of both
interactions leads to anomalous behavior of the spin Hall
conductivity. More specifically, the conductivity becomes
diverging when the Fermi level approaches the point, at
which the top of the upper valence band touches the bottom
of the lower conduction band �see the inset in Fig. 3�. This
appears when �=�SO. Asymptotic behavior of the conduc-

FIG. 2. �Color online� Spin Hall conductivity in the absence of
intrinsic spin-orbit interaction and for indicated values of the
Rashba coupling parameter �R. The other parameters are as in Fig.
1. The inset shows the energy spectrum in the vicinity of the energy
gap for �R=0.01 meV.

FIG. 3. �Color online� Spin Hall conductivity for
�R=0.1 meV and indicated values of �SO, �SO��R. The inset
shows the energy spectrum in the vicinity of the Dirac point for
�SO=0.01 meV. The parameter v is taken as in Fig. 1.
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tance near the point �=�SO is described by the term
��SO /2�R�ln�−�SO−�R+���R+��2� when �=�SO is ap-
proached from the right ����SO� side and
��SO /2�R�ln��SO−�R+���R−��2� when it is approached
from the left ����SO� side.

B. �R��SO

Let us now consider the opposite situation, when �R is
smaller than �SO. The corresponding spin Hall conductivity
is shown in Fig. 4 for �R=0.01 meV and three different
values of �SO �larger than �R�. General shape of the curve
showing spin Hall conductivity as a function of the chemical
potential is similar to that for �R=0. However, the interplay
of intrinsic spin-orbit interaction and Rashba coupling leads
to an interesting feature. More specifically, there is now no
divergence but a weak kink in the conductance appears on
the negative chemical-potential side. When �SO decreases
and approaches �R, the kink becomes more pronounced. The
kink is associated with splitting of the valence band by the
Rashba interaction. The upper valence-band edges are now at
−�SO−2�R and −�SO+2�R.

C. �R=�SO

Variation in the spin Hall conductivity with the Fermi
level becomes more complex when both �SO and �R are
comparable. Some simple analytical results, however, can be
obtained for �R=�SO. For this particular case, the bottom
edges of two conduction bands coincide with top edge of one
of the valence band while the top edge of the second valence
band is much below �see the inset in Fig. 5�.

The relevant formula for the spin Hall conductivity de-
pends then on the Fermi level as follows:

1. ��−3�SO

For ��−3�SO, the spin Hall conductivity is given by the
formula

�xy
Sz = −

�

� + �SO

e

4�
. �35�

This formula covers the energy range up to the top edge of
the lower valence band.

2. −3�SO����SO

When −3�SO����SO, the corresponding formula for
the conductivity takes the form

�xy
Sz = � �

2�SO
+ ln��SO − �

4�SO
�� e

4�
. �36�

This formula, in turn, describes spin Hall conductivity when
the chemical potential is between the top edge of the lower
valence band and bottom edges of the conduction bands.
Note that this formula leads to diverging spin Hall conduc-
tivity when the Fermi level tends from left �lower values� to
�SO.

3. ���SO

Finally, for ���SO the spin Hall conductivity is equal to

�xy
Sz =

�

� + �SO

e

4�
. �37�

This formula gives a finite spin Hall conductivity in the
whole range of its applicability, also at the point �=�SO.

The spin Hall conductivity for �R=�SO is shown in Fig. 5
for indicated values of �R=�SO. The anomaly at
�=�R=�SO is now clearly visible. When the chemical po-
tential � tends to �=�R=�SO from the right ����SO� side,
the conductivity is finite while when it tends to �=�R=�SO
from the left ����SO� side, the conductivity becomes di-
verging. The vertical dotted lines in Fig. 5 indicate only the
position where the anomaly appears.

VI. SUMMARY AND DISCUSSION

Assuming intrinsic and Rashba spin-orbit interaction we
have calculated topological contribution to the spin Hall con-

FIG. 4. �Color online� Spin Hall conductivity for
�R=0.01 meV and indicated values of �SO, �SO��R. The inset
shows the energy spectrum in the vicinity of the Dirac point for
�SO=0.05 meV. The parameter v is taken as in Fig. 1.

FIG. 5. �Color online� Spin Hall conductivity for indicated val-
ues of �R=�SO. The inset shows the energy spectrum in the vicinity
of the Dirac point for �R=�SO=0.01 meV. The parameter v is
taken as in Fig. 1. The vertical dotted lines indicate the position
where the anomaly appears.
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ductivity. In the limit of vanishing Rashba term we arrived at
the results which are in agreement with those available in the
relevant literature. When, in turn, the Rashba coupling domi-
nates and intrinsic spin-orbit coupling vanishes, we have
found asymmetric behavior of the spin Hall conductivity
with respect to the sign reversal of the chemical potential.
Such a change in the chemical potential can be achieved with
a gate voltage, for instance.

When both intrinsic and Rashba spin-orbit interactions are
present, their interplay leads to some peculiar and anomalous
behavior of the spin hall conductivity with the Fermi level.

In particular, for some range of spin-orbit parameters, the
spin Hall conductivity was found to diverge when the Fermi
level approaches the limit �=�SO.
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